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ABSTRACT
Biomarker identification, i.e., detecting the features that in-
dicate differences between two or more classes, is an impor-
tant task in omics sciences. Mass spectrometry (MS) provide
a high throughput analysis of proteomic and metabolomic
data. The number of features of the MS data sets far ex-
ceeds the number of samples, making biomarker identifica-
tion extremely difficult. Feature construction can provide a
means for solving this problem by transforming the original
features to a smaller number of high-level features. This
paper investigates the construction of multiple features us-
ing genetic programming (GP) for biomarker identification
and classification of mass spectrometry data. In this paper,
multiple features are constructed using GP by adopting an
embedded approach in which Fisher criterion and p-values
are used to measure the discriminating information between
the classes. This produces nonlinear high-level features from
the low-level features for both binary and multi-class mass
spectrometry data sets. Meanwhile, seven different classi-
fiers are used to test the effectiveness of the constructed
features. The proposed GP method is tested on eight dif-
ferent mass spectrometry data sets. The results show that
the high-level features constructed by the GP method are
effective in improving the classification performance in most
cases over the original set of features and the low-level se-
lected features. In addition, the new method shows superior
performance in terms of biomarker detection rate.

1. INTRODUCTION
The discovery of fingerprints in transcproteomics, pro-

teomics and metabolomics samples is attracting much re-
search in the life sciences [5]. Identifying the variables (genes,
proteins, metabolites) that distinguish different populations
with certain groups is highly interesting. Such variables are
commonly referred to as biomarkers [7].
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Mass spectrometry (MS) offers high throughput analysis
of the biological samples by determining the elemental com-
positions of these samples [1, 8]. The molecules in the mass
spectrometer are usually ionized to facilitate the process of
measuring the molecules, therefore, each of the molecules is
associated with a mass to charge ratio (m/z). Mass spec-
trometer produces spectra which are composed of m/z val-
ues of the charged molecules in the sample and their corre-
sponding abundances (intensities). The mass spectrometer
is often accompanied by a liquid chromatography (LC) de-
vice. LC separates the molecules and elute them into the
mass spectrometer at different retention times. This helps
in reducing the complexity of the sample, and hence, in-
creasing the identification numbers. The produced LC-MS
spectra is composed of m/z values, retention times and in-
tensities of the compounds in the sample. The number of
features of the spectra is usually very large, exceeding thou-
sands, and at the same time the number of samples is very
small [27]. This makes biomarker identification extremely
difficult [18,28].

Feature construction can provide a means for dimension-
ality reduction and producing new high-level features from
the original low-level features. The new constructed features
will also benefit in discovering the relationship between the
original features, and therefore, improve the classification
performance [22]. Existing feature construction methods
can be classified into three main categories [4, 17], which
are wrapper approaches, filter approaches, and embedded
approaches. Wrapper approaches use a classification algo-
rithm to evaluate the goodness of the constructed features
while filter approaches are independent of any classification
algorithm. Embedded approaches construct features during
the learning process of a classification algorithm.

Genetic programming (GP) can dynamically build models
for classification. Due to the nature of GP which automati-
cally produces high-level features (construction) by combin-
ing the original features through the functions used in the
evolved models, GP can be a good choice for feature con-
struction. This capability of automatic feature construction
can also help in discovering the hidden relationship between
features [26], and therefore, increase the classification per-
formance. GP is not limited to a specific transformation
model like principle component analysis for example [12].
Moreover, GP can build different transformations without
any predefined templates.

249

Copyright © 2014 ACM  978-1-4503-2662-9/14/07…$15.00. 



Figure 1: Overview of the GP-multiple feature construction system.

GP has been widely used for feature construction [12, 17,
21,22] with promising results in terms of improving classifi-
cation accuracy. There have been different scenarios for the
use of GP for feature construction, for example, in [9] GP
was used as an embedded approach to construct features,
while in [11, 12], the authors used a wrapper approach to
construct features. In addition, a filter approach was used
in [22] to construct a single feature per class depending on
the entropy measure.

Most of the GP based feature construction approaches
were based on constructing a single feature and either using
this single feature for classification or using this feature along
with the original set of features. Using the single constructed
feature alone might not achieve acceptable classification ac-
curacy and using the combination of a single constructed
feature along with the original set of features will increase
the dimensionality [10, 22]. Therefore, the second approach
is completely inappropriate for high dimensional data like
MS data, where the number of features exceeds thousands.
However, none of these methods investigates the effect of
constructing multiple features from a single tree during the
evolutionary process of GP.

In this paper, we present a new GP approach to construct-
ing multiple features, which uses GP to select a good subset
of features and automatically construct new features. The
new approach is expected to further decrease the dimension-
ality of the selected features and improve the classification
performance. This method is also evaluated through its per-
formance for biomarker detection on MS data.

Goals
The goal of the paper is to investigate the performance of
the features constructed by GP in terms of the classification
accuracy and biomarker identification. The new GP method
works by taking an embedded approach, where the features
are constructed by automatically generating high-level fea-
tures from the combination of the original low-level features
and the functions from the function set. The sub-trees and
root nodes are used as the constructed features. Fisher cri-
terion and p-values are used to measure the discriminating
information between different classes. Specifically, we will
investigate the following questions:

1. How can multiple features be automatically constructed
from the evolved GP tree?

2. How can Fisher criterion and the p-values be used to
construct a new fitness measure?

3. What is the effect of mixing several compounds of pep-
tides or metabolites in terms of classification accuracy?

4. Whether the constructed features perform better than
the low-level selected features?

5. How well can the new method detect the actual biomark-
ers?

Organisation
The rest of the paper is organised as follows. Section 2 de-
scribes the new GP approach. The experiment set-up, the
data sets description and preprocessing are presented in sec-
tion 3. Section 4 reports the experimental results along with
the discussions. The conclusions of the paper are presented
in section 5.

2. THE NEW GP ALGORITHM FOR MUL-
TIPLE FEATURE CONSTRUCTION

2.1 Overall Structure
GP can automatically produce multiple outputs from its

sub-trees and root nodes [32]. The use of subtree outputs
(internal nodes) has shown to be effective for classification
problems [32] which encourages us to use the internal nodes
outputs for constructing new features. Unlike other ap-
proaches which use only the output of root node of the
evolved tree as the constructed feature, the sub-tree nodes’
output are also used as high-level features here. This will
help in construction of more features from a single evolved
tree and not from multiple trees (runs) and therefore, re-
duce the computational cost. The more high-level features
can also improve the classification accuracy. The proposed
GP method uses the original low-level features to construct
multiple features. The constructed features are the outputs
of the functions that are calculated using the original fea-
tures. For example, if two original features from the termi-
nal set are mixed with a multiply function, the constructed
feature is the output of the multiplication of those two fea-
tures. The constructed multiple features are used to trans-
form the original data. Finally, the projected data is used
for classification. The overview of the GP multiple feature
construction system is shown in Figure 1.

The process is as follows: divide the data sets into training
and test sets using ten-fold cross-validation. Use the train-
ing set with GP to construct new features, where the good-
ness of the features are measured using their discriminating
power between the classes, which is calculated using Fisher

250



Figure 2: Example of how the features are con-
structed.

criterion and the p-values. The features are constructed by
taking the output of the function on the original features
in the evolved program. The new constructed features are
used to project both the training and test sets, where dif-
ferent classification algorithms can be used to evaluate new
features. Figure 2 shows an example of how the features are
constructed from an evolved GP tree. As shown in Figure
2, the two features F 1 and F 2 construct a new feature F’1,
while the two features F 3 and F 4 construct the new feature
F’2. Finally, the new feature F’3 which represents the final
output of the tree is constructed from the new features F’1
and F’2. Therefore, this evolved tree will construct three
new features from the four original selected features.

2.2 New Fitness Function
The fitness function determines how well a GP tree per-

forms, which is one of the key components in a GP system.
Usually, using a wrapper based fitness measure in GP for
feature construction can achieve better classification per-
formance than a filter based fitness measure [12], but the
computational cost is higher as it requires training a clas-
sifier for each individual of the population. Meanwhile, the
classification performance success depends more on the dis-
crimination power of the classifier. Therefore, designing a
fitness function as an embedded method can avoid those dis-
advantages.

The Fisher criterion [9] works by maximizing the between-
class scatter and minimizing the within-class scatter. For a
two-class problem, the Fisher criterion is defined as

Fisher criterion =

N∑
n=1

|
µi − µj
σ2
i − σ2

j

| (1)

where µi and µj are the means of the samples which be-
long to class i and class j, respectively. σ2

i and σ2
j are the

variances of the samples which belong to class i and class j,
respectively. N is the number of samples in the training set.

For c classes where c > 2, the Fisher criterion is firstly
calculated for each adjacent pair of classes based on Equa-
tion (1) and the summation of those pairs is the final value
of Fisher criterion.

In addition to the Fisher criterion, minimizing the p-value
between the classes helps in the significant maximization of
the distance between the classes. The p-values are calculated
using the one way analysis of variance (one-way ANOVA)
test which also measures the between-class and within-class
separability. The new fitness function Fp is given by:

Fp =
Fisher criterion

Pvalue
(2)

In Equation (2), the Fisher criterion is the measured dis-
tribution of between-class scatter over the within-class scat-
ter of the GP program outputs. The Pvalue ensures that the
degree of separation of the GP program outputs of different
classes is significantly large. The objective is to maximize
the fitness. Therefore, during the evolution, the p-value is
minimized and the Fisher criterion is maximized (i.e. the
between-class distance is maximized and the within-class
distance is minimized).

3. EXPERIMENT SETUP
This section explains the design of the experiments includ-

ing the data sets that were used in the experiments and the
preprocessing of the data sets. The terminal set, the func-
tion set and the GP parameters are also explained in this
section.

3.1 Data Sets and Preprocessing
In order to test the effectiveness of the new GP approach,

eight MS data sets were used. In this section, the data
sets characteristics and the preprocessing will be explained.
Table 1 summarizes the characteristics of the data sets.

Preprocessing of the MS data involves several steps which
is necessary for successful analysis of the data. The MS data
sets include binary and multi-class classification problems
which are described as follows.

• Pancreatic cancer data set [14]: This data set is ac-
quired using a time-of-flight (TOF) mass spectrometer
and the samples were analyzed using surface-enhanced
laser desorption/ionization (SELDI). It is composed of
101 healthy samples and 80 cancerous samples. The
preprocessing steps includes baseline subtraction where
piecewise linear interpolation is used for regression of
the baseline. Afterwards, filtering and normalization
are performed using Gaussian filter and area under the
curve respectively.

• Ovarian cancer low and high resolution data sets [23]:
Both of these data sets were analyzed using SELDI-
TOF technology. Although the high resolution mass
spectra can generate more distinguishable sets of diag-
nostic features, the high resolution data is more com-
plex than the low resolution data. Similar to the pre-
processing of the Pancreatic Cancer data set, the pre-
processing of these two data sets involves baseline ad-
justment, filtering and normalization. The final step
performed is the alignment in order to remove the fluc-
tuation in the m/z values. The ovarian cancer high
resolution data set contains 121 cancer and 95 healthy
samples, while the low resolution data set contains 162
cancerous samples and 91 healthy samples.

• Prostate cancer data set [24]: Samples of three dif-
ferent stages of Prostate Cancer and healthy samples
were analyzed using low resolution SELDI-TOF mass
spectrometer. It is composed of four classes which are:
Healthy (63 samples), Benign (stage1) (190 samples),
Prostate Cancer stage2 (26 samples) and Prostate Can-
cer stage3 (43 samples).

• Toxpath data set [25]: Serum samples with toxicity-
related biomarkers were analyzed using SELDI-TOF
mass spectrometer. The data set consists of four classes
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Table 1: Data sets characteristics
Data Set # Features # Samples #Classes
Pancreatic cancer 6771 181 2
Ovarian cancer low resolution 15,154 253 2
Ovarian Cancer high resolution 15,000 216 2
Prostate cancer 15,000 322 4
Toxpath 7105 115 4
Arcene 10,000 200 2
Apple-plus 773 40 4
Apple-minus 365 40 4

which are: definite positive (34 samples), definite neg-
ative (28 samples), probable positive (10 samples) and
probable negative (43 samples). The prostate and Tox-
path data sets were already baseline adjusted. There-
fore, both of the data sets were only filtered and nor-
malized.

The above five data sets were downloaded from FDA-
NCI Clinical Proteomics Program1. Those data sets
are already binned therefore the number of features re-
mains the same after preprocessing. Matlab [20] bioin-
formatics toolbox was used to perform the preprocess-
ing of the data.

• Arcene data set [3]: Three different MS data sets were
combined to produce the Arcene data set which con-
tains 100 samples of cancer patients and 100 healthy
samples. The data set is available after preprocessing
and it is downloaded from the UCI machine learning
repository [3].

• Apple extract data sets [8]: These two data sets are
metabolomics data sets where twenty apples were an-
alyzed using LC-MS technology. Four classes are cre-
ated from the twenty apples where each class contains
ten samples. Three classes contain a mixture of known
compounds (biomarkers) while the fourth class is not
spiked-in with those compounds. The negative and
positive ion modes form the two different data sets.
The total number of biomarkers is five and twelve in
the negative and positive ion modes, respectively. The
data sets are available in NetCDF format and it is pre-
processed using XCMS [29] with the settings described
in [8].

3.2 GP Settings
The standard tree-based GP is used in the experiments

where each node outputs a single floating point [6, 26]. The
initial population is generated using the ramped half-and-
half method [16].

The m/z and retention time variables represent the fea-
ture identities of the compounds and the corresponding in-
tensity is the feature value [31]. Therefore, the terminal set
is composed of the intensity variable which represents the
abundance of the compound in the data. For each sam-
ple in a data set, a single floating-point value is produced
by the program at the root of its evolved tree [16]. The
function set is composed of the four mathematical opera-
tors +,−,×,% in addition to the operators max, min and if
then else (max,min, IFTE). The % is a protected division
which returns zero for dividing by zero. All the function
set members take two arguments except for IFTE, which
takes three argument and it returns the second argument if
the first argument is negative or it returns the third argu-
ment otherwise. The evolution terminates at a maximum

1http://home.ccr.cancer.gov/ncifdaproteomics/

Table 2: GP settings
Function set +,−,×, %, max, min, IFTE

Variable terminals Intensity features
Initialization method Ramped Half-and Half

Tree Depth 2-10
#Generations 50
Mutation rate 20%
Crossover rate 80%

Elitism Yes%
Population Size 2000
Selection type Tournament

Tournament Size 7

number of generations of 50. This number is selected as
there was no further improvement in increasing the number
of generations. The size of population is set to 2000. The
tree-depth has been set between 2 and 10. The crossover
and mutation rates are set to 0.8 and 0.2, respectively. The
tournament selection method is used here and the size is set
to 7. An elitist method is taken to ensure the best individual
in the next generation is not worse than the current gener-
ation and, therefore, keeps the performance monotonically
increasing during the evolution [30]. The ECJ [19] package
was used in our experiments for running GP. Table 2 shows
the various settings of the new method.

3.3 Benchmark Classification Algorithms
To evaluate the classification performance of the constructed

features, various linear and non-linear classifier algorithms
are used in the experiments. The WEKA package [13] is
used to run the classification algorithms. The classification
algorithms used are as follows.

1. Multi-layer perceptron (MLP) classifier: It is the im-
plementation of artificial neural networks (ANN) which
is a non-linear classifier where the input space is trans-
formed into layers of networks.

2. Naive Bayes Tree (NB-tree): Uses Naive Bayes classi-
fiers at the leave nodes of a decision tree.

3. Random Forest (RF): constructs a multitude of deci-
sion trees for training.

4. K- Nearest Neighbors (K-NN): it is the implementa-
tion of the nearest neighbors algorithm where the out-
put class is the class of the nearest training example.
K is set to 1.

5. Naive Bayes (NB): is a probabilistic method based on
Bayes theorem.

6. J-48: The C4.5 decision tree classifier.

7. Decision table (DT): The possible subset of features
are used to construct the decision tables. The test set
samples are mapped to cells in the decision table. The
samples in the test set are then classified according to
the label of the majority of training samples of the cell
they are mapped to in the table [15].
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3.4 Comparison Methods
The performance of the proposed GP method is compared

with several methods. Firstly, the original set of features of
each data set are used with the seven classifiers for classi-
fication. Secondly, the proposed method firstly selects low-
level features and through its operators form another set of
high-level features. The objective here is to test whether
the high-level features can perform better than the low-level
features selected by the same method. Therefore, the fea-
tures selected by the proposed method are compared against
the features constructed by it. This method is annotated as
Method1. Finally, another method is used for comparison
which is a GP-based feature selection method (Method2) [2]
for MS data. The reason for selecting Method2 is its pre-
vious good performance on MS data. The settings and pa-
rameters of Method1 and Method2 are set to be the same as
the proposed method on the eight data sets. Method1 and
Method2 select the features which are used in the terminal
nodes of the best individual. Both Method1 and Method2

are used with the same seven classifiers.
The classification performance of the new GP method for

feature construction is compared to that of using all the orig-
inal features, the low-level features selected by Method1 and
the low-level features selected by Method2 [2]. For each set
of the GP experiments, the GP process is repeated for 30
independent runs with 30 random seeds. A significance test
(Z-test) is with 90% significance level is performed to com-
pare the classification performances of the three methods.

4. RESULTS AND DISCUSSIONS
In Table 3, the new GP method is annotated as GP-

Constructed. The mean (x), best and the standard deviation
(s) of the 30 runs for using the selected and the constructed
features with the seven classifiers are reported in Table 3.
“Avg#”shows the average number of selected or constructed
features by each method. The evaluation of the seven classi-
fiers is done through ten-fold cross validation. The accuracy
of using all the original features is also reported in the same
table and shown by “All”.

In Table 3 the sign ᵀ means that the proposed method
is significantly better than using all the features, while the
sign † means that the proposed method is significantly bet-
ter than Method1. The sign ? means the new method is
significantly better than Method2. The experiments were
run on a machine with an Intel(R) Core(TM) i7-3770 CPU
@ 3.40GHz, running Ubuntu 4.6 and Java 1.7.0 25 with a
total memory of 8GByte.

4.1 Comparison of the Constructed Features
with All the Original Features

As shown in Table 3, for all the data sets except for Apple-
plus and Apple-minus, using the original set of features with
MLP and NB-tree were both running out of memory and did
not manage to produce the results due to the huge search
space.

The best classification performance of the GP constructed
features is better than using the original set of features on all
the data sets except for Apple-plus and Apple-minus data
sets, where their performance were both ideal. The average
classification performance of the GP constructed features is
significantly better than using all the original features on
almost all the MS data sets excluding the LC-MS data sets
(Apple-plus and Apple-minus). This suggests that GP can

benefit in both selecting a good set of features and at the
same time in discovering the hidden relationship between the
features by constructing the new features that can perform
better.

For all the seven classifiers, the features constructed by
GP managed to improve the classification accuracy over us-
ing all the original features. On the Ovarian Low, Ovar-
ian High, Apple-plus and Apple-minus data sets, the con-
structed features achieved 100.0% accuracy with most of the
classifiers. For other data sets, the improvement of the ac-
curacy of the seven different classifiers is 25.97-41.44% on
Pancreatic Cancer, 14.5-27.5% on Arcene, and 2.55-27.79%
on Prostate Cancer and Toxpath.

In addition to improving the classification performance,
the proposed GP approach also helps in reduction of di-
mensionality. For example in Prostate Cancer data set, the
mean number of the constructed features is 26.03, which
means that GP reduced around 99.82% of the original di-
mensionality. The only exception is the Toxpath data set
with J-48 classifier where the original features are slightly
better than the average performance of the constructed fea-
tures, but the best performance of the constructed features
achieved the same performance. This is mainly due to the
imbalance between the number of samples in each class and
the embedded feature selection capability of J-48.

4.2 Comparison of the New Constructed Fea-
tures with the Low-Level Selected Features

The features constructed by the new approach are also
compared with the features selected by GP Method1 (low-
level features of the proposed method) and GP Method2.
The objective is to test whether the new smaller set of high-
level features constructed by GP can perform better than
the selected original low-level features.

Comparing the proposed method with Method1:
In most cases, the classification performance of the fea-

tures constructed by the new approach (i.e. notated as GP-
Constructed) is significantly better than that of the features
selected by Method1 (low-level features of GP-Constructed)
for most classifiers. For example, On the Toxpath data set,
GP-Constructed is significantly better than Method1 with
all the seven classifiers except for NB-tree, where their re-
sults are similar.

In terms of the dimension reduction, GP-Constructed fur-
ther decreased the number of features over Method1 on all
the eight data sets. The average number is reduced by 7.9-
29.26 in different data sets. Meanwhile, GP-Constructed
either significantly improved or kept the same performance
as the low-level selected features in almost all cases.

Comparing the proposed method with Method2:
In almost all data sets, the classification performance of the
new approach is significantly better or similar to that of
Method2 for most classifiers. For example, GP-Constructed
is significantly better than Method2 on the Ovarian Low,
Ovarian High, and Apple-plus data sets with almost all the
seven classifiers, and on the Toxpath and Apple-minus data
set with five of the seven classifiers.

The average number of the constructed features is smaller
or much smaller than the average number of the features
selected by Method2. The new method reduces the number
of features on average from 1 to 221 features over Method2

on different data sets. With the smaller set of constructed
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Table 3: Results of using the constructed, selected and original set of features with seven classifiers.

Data
set

Classifier
All GP-Constructed Method1 Method2

Best Avg# Best x ±s Avg# Best x ± s Avg# Best x ± s Avg#

Pan
Cancer

MLP -

6770

95.55 88.48±4.97†?

36.20

94.44 86.17±4.40

65.46

82.60 74.56±6.12

257.66

NB-tree - 96.66 89.57 ±3.77? 96.66 90.92 ±3.38 96.73 92.94 ±2.87
RF 58.56 100.0 95.38 ±2.14ᵀ? 98.88 95.13 ±2.00 97.83 94.11 ±1.51

K-NN 55.80 98.88 95.56 ±1.80ᵀ 98.88 95.70 ±2.16 100.0 95.73 ±1.61
NB 51.38 77.77 62.50 ±5.76ᵀ†? 64.44 57.26 ±3.44 56.52 54.57 ±0.91
J-48 50.82 92.77 87.82 ±2.77ᵀ 94.44 88.48 ±2.41 92.93 88.42 ±2.16
DT 61.32 81.15 72.36 ±5.33ᵀ†? 80.44 71.17 ±4.40 75.61 64.57 ±6.12

Ovarian
Low

MLP -

15154

100.0 99.97±0.14?

27.20

100.0 99.98±0.07

46.10

100.0 99.23±0.66

62.03

NB-tree - 100.0 99.68 ±0.45†? 100.0 99.55 ±0.43 100.0 99.06 ±0.68
RF 93.28 100.0 99.67±0.26ᵀ? 100.0 99.73±0.37 100.0 99.21 ±0.46

K-NN 92.09 100.0 99.95 ±0.20ᵀ†? 100.0 99.76 ±0.47 100.0 99.01 ±0.68
NB 76.28 99.21 96.91 ±1.42ᵀ†? 97.22 94.48 ±2.22 96.87 91.12 ±2.78
J-48 95.65 100.0 98.76 ±1.06ᵀ†? 100.0 98.20 ±1.06 99.22 97.28 ±0.93
DT 92.49 100.0 97.97 ±1.39ᵀ? 100.0 97.98 ±0.49 100.0 97.23 ±2.43

Ovarian
High

MLP -

15000

100.0 99.93±0.28†?

27.26

100.0 98.69±0.80

48.23

100.0 97.00±1.63

63.00

NB-tree - 100.0 99.55 ±0.90†? 100.0 98.10 ±1.12 100.0 96.12 ±2.01
RF 87.04 100.0 99.71 ±0.51ᵀ†? 100.0 98.33±0.92 100.0 97.17 ±1.08

K-NN 86.57 100.0 99.85 ±0.43ᵀ†? 100.0 98.97 ±0.83 99.10 96.10 ±1.38
NB 83.79 100.0 94.16 ±4.38ᵀ? 98.13 93.97 ±2.36 93.11 88.22 ±3.34
J-48 86.57 100.0 96.76 ±2.72ᵀ†? 98.59 95.28 ±2.00 97.71 93.93 ±1.77
DT 82.87 97.93 94.74 ±2.16ᵀ†? 97.00 93.69 ±3.20 96.21 92.00 ±3.45

Arcene

MLP -

10000

99.00 95.48±2.98†

32.50

100.0 96.15±1.50

58.56

99.00 95.78±1.70

102.1

NB-tree - 98.00 91.57 ±3.10†? 99.00 94.03 ±2.65 99.00 94.73 ±3.01
RF 72.50 100.0 97.28 ±0.51ᵀ? 100.0 97.50±1.27 100.0 96.68 ±1.53

K-NN 84.50 100.0 96.73 ±1.48ᵀ 100.0 96.70 ±1.49 99.00 96.33 ±1.58
NB 70.0 85.50 72.75 ±7.53 88.5 72.00 ±6.56 77.50 69.95 ±3.17
J-48 81.00 95.50 90.43 ±2.76ᵀ? 93.50 90.15 ±2.59 94.50 88.65 ±2.45
DT 71.50 92.00 83.51 ±4.64ᵀ 93.67 84.15 ±3.50 94.00 85.78 ±2.35

Pros.
Cancer

MLP -

15154

100.0 96.47±2.62†

26.03

99.68 97.39±1.54

41.76

99.39 96.69±1.59

40.83

NB-tree - 98.58 95.09 ±2.04? 98.12 94.59 ±1.76 98.78 96.29 ±1.43
RF 98.75 100.0 98.83 ±0.90†? 98.75 97.82±0.76 100.0 98.80 ±0.80

K-NN 97.45 100.0 98.83 ±0.95ᵀ†? 99.37 97.72 ±0.98 100.0 97.74 ±1.04
NB 58.13 84.91 75.37 ±6.13ᵀ†? 82.18 70.34 ±5.25 80.79 69.85 ±6.91
J-48 95.00 94.33 88.55 ±2.86 90.62 87.71 ±2.13 92.07 87.75 ±2.46
DT 72.21 82.25 73.49 ±4.92† 81.25 72.39 ±5.54 83.39 73.65 ±4.59

Toxpath

MLP -

7105

99.12 94.42±3.03†?

37.1

98.25 93.07±2.95

59.40

96.72 91.45±4.56

177.80

NB-tree - 99.12 89.56 ±4.82 97.36 89.94 ±4.80 96.72 89.84 ±5.75
RF 97.36 100.0 97.92 ±1.39†? 100.0 97.05±1.75 97.54 93.67 ±2.10

K-NN 97.75 100.0 98.65 ±1.10ᵀ†? 100.0 97.75 ±1.14 96.72 92.57 ±1.54
NB 58.12 82.45 61.99 ±8.89†? 60.52 51.23 ±4.93 54.91 49.72 ±2.72
J-48 89.47 89.47 83.59 ±3.48†? 89.47 81.46 ±4.78 88.53 80.19 ±3.68
DT 64.91 76.12 67.42 ±3.03ᵀ†? 78.25 65.07 ±4.45 71.72 62.45 ±2.56

Apple
plus

MLP 100.0

773

100.0 100.0±0.0†?

32.30

100.0 99.25±2.38

46.73

96.72 91.01 ±3.68

33.26

NB-tree 100.0 100.0 100.0 ±0.0†? 100.0 98.83 ±2.38 96.72 87.67 ±5.04
RF 100.0 100.0 99.85 ±0.83†? 100.0 92.65 ±2.33 97.54 91.01 ±3.68

K-NN 100.0 100.0 100.0±0.0? 100.0 100.0 ±0.0 98.36 95.24 ±1.94
NB 100.0 100.0 95.83 ±1.75? 100.0 95.93 ±1.87 71.31 55.57 ±6.62
J-48 100.0 100.0 93.29 ±2.28†? 100.0 92.58 ±3.23 88.52 80.71 ±4.58
DT 100.0 100.0 97.25 ±2.38†? 100.0 96.35 ±3.23 96.72 91.01 ±3.68

Apple
minus

MLP 100.0

365

100.0 99.71±1.66?

28.43

100.0 99.58±1.87

36.33

100.0 98.26±3.63

41.33

NB-tree 100.0 100.0 99.03 ±2.27? 100.0 99.75 ±1.01 100.0 98.96 ±2.67
RF 100.0 100.0 100.0 ±0.0†? 100.0 99.63 ±0.63 100.0 99.86 ±0.53

K-NN 100.0 100.0 100.0±0.0 100.0 100.0 ±0.0 100.0 100.0 ±0.0
NB 100.0 100.0 100.0 ±0.0†? 100.0 99.58 ±1.33 100.0 92.08 ±9.94
J-48 100.0 100.0 100.0 ±0.0? 100.0 100.0 ±0.0 100.0 90.76 ±9.15
DT 100.0 100.0 99.19 ±1.66? 100.0 99.00 ±1.87 100.0 97.26 ±3.63

features, the new approach still achieved similar or better
classification performance than Method2 in almost all cases.

4.3 Biomarker Identification
We tested the performance of biomarker identification of

the proposed method on the Apple-plus and Apple-minus
data sets because only in these two data sets, a set of com-
pounds were spiked-in and predefined as the biomarkers.

Figure 3 shows an example of the approach used to count
the number of identified biomarkers. As shown in Figure 3,
the intersection between the selected features in the terminal
nodes of the tree and the predifined set of biomarkers are
used as an evaluation of the biomarker identification task.

Table 4 shows the biomarkers in Apple-plus and Apple-
minus data sets (positive and negative modes of the ions).
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Table 4: Identified spike-in biomarkers by the proposed GP method and Method1 for the Apple data sets.
The biomarkers are identified using their m/z values.

m/z values in Apple-plus data set New Method Method2

(12 biomakers) Selection
Status

% of GP
runs

Selection
Status

% of GP
runs

331.21 7 0 3 100.0
471.09 3 80.00 3 50.00
107.05, 169.05, 238.05, 275.09, 456.11, 459.13 3 100.0 7 0.0
456.62, 475.10 7 0.0 7 0.0
449.11 3 66.67 3 88.0
229.09 3 90.00 7 0.0
m/z values in Apple-minus data set New Method Method2

(5 biomakers) Selection
Status

% of GP
runs

Selection
Status

% of GP
runs

463.0 3 86.67 7 0.0
447.09 3 100.0 3 86.67
273.03 3 100.0 3 93.33
435.13 3 100.0 7 0.0
227.07 3 93.33 7 0.0

Figure 3: Biomarker Identification approach.

The table also shows the status of identification of the biomark-
ers by the proposed GP method and Method2. The percent-
age of runs in which these biomarkers appear are shown in
Table 4. As shown in Table 4, GP identified the complete set
of biomarkers in Apple-minus data sets. Method2 detected
only two bimarkers in 93.33% and 86.67% of the runs, re-
spectively. For Apple-minus data set, the new GP method
detected three biomarkers in all its 30 runs and the remain-
ing two in 86.67% and 93.33% of the runs. For the Apple-
plus data set, nine out of the twelve biomarkers (75%) are
detected by the proposed GP method, where seven biomark-
ers are identified in 100.0% of runs and the other three are
selected in 66.67%, 80% and 90% of the GP runs. However,
Method2 identified only three of the twelve biomarkers. This
suggests that the new proposed method can be successfully
used for the task of biomarker identification as it constructs
a new set of features that can achieve better classification
accuracy and biomarker detection rate.

5. CONCLUSIONS AND FUTURE WORKS
The goal of this paper was to test the performance of GP

in constructing multiple new high-level features and to ex-
amine the effect of these new features in terms of dimension-
ality reduction, classification performance and biomarker
identification. The goal was successfully achieved by devel-
oping a new GP method, which takes an embedded approach
by maximizing the significant discrimination between differ-
ent classes. The performance of the high-level constructed
features are compared to the whole original set of features
and the selected set of low-level features from two meth-
ods with seven different classifiers. The results show that
the new features performed better than the original set of
features for all the data sets with most of the classifiers.
The results also show that these smaller sets of new features
achieved significantly better or similar performance to the
selected low-level features on almost all the data sets. More-

over, the constructed features helped in reducing the dimen-
sionality more than the selected features. The biomarker
identification results of the proposed method showed that
the new GP method can identify 100.0% of the biomarkers
in the Apple-minus LC-MS data set and 75% of the prede-
fined biomakers in the Apple-plus data set. Due to its better
classification and biomarker identification performance, the
new GP can be successfully applied to this task.

As for future directions, it can be tested if using numerical
simplification of the evolved trees can reduce the number of
constructed features. Furthermore, as there are no publicly
available feature construction methods like feature selection,
other feature construction methods will be implemented in
the future to compare them to the proposed method.
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